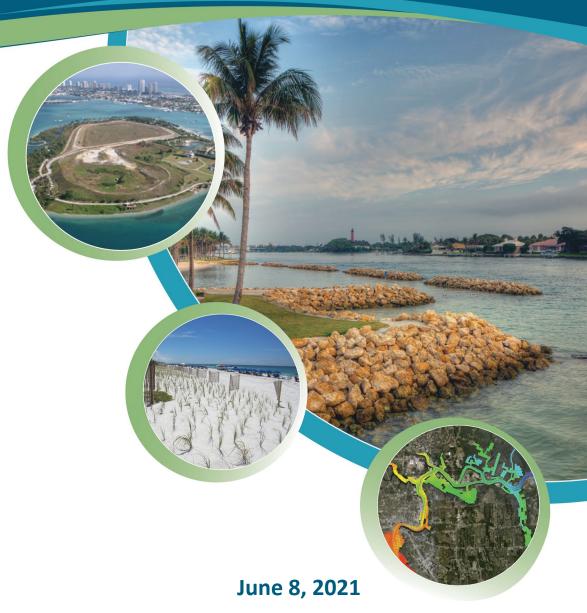
# TAYLOR ENGINEERING, INC.


# Venice Stormwater Projects Update











### Agenda

- Introductions
- Overview and Outfall History
- SIMPLE Modeling 28 outfalls
- Initial Sampling 16 outfalls
- Priority Outfall Monitoring
- Model Calibration
- Preliminary Priority Projects

Outfall

Number

1

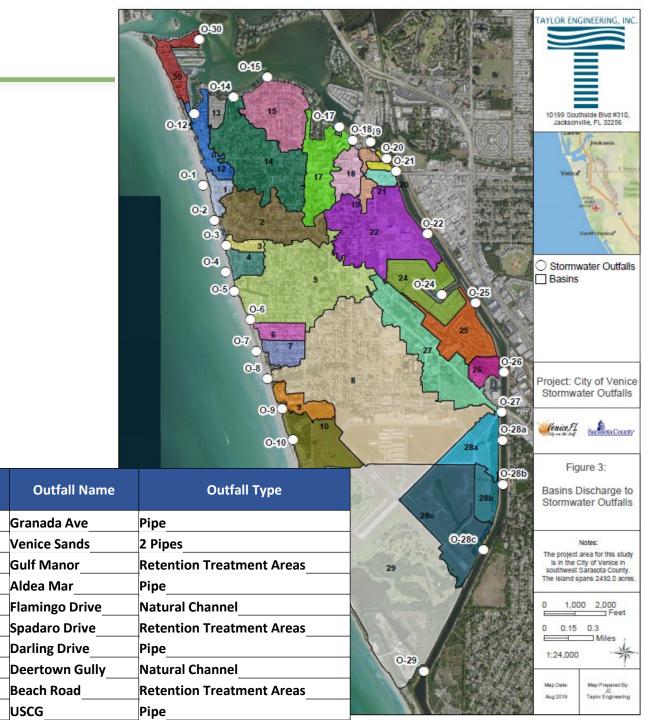
2

3

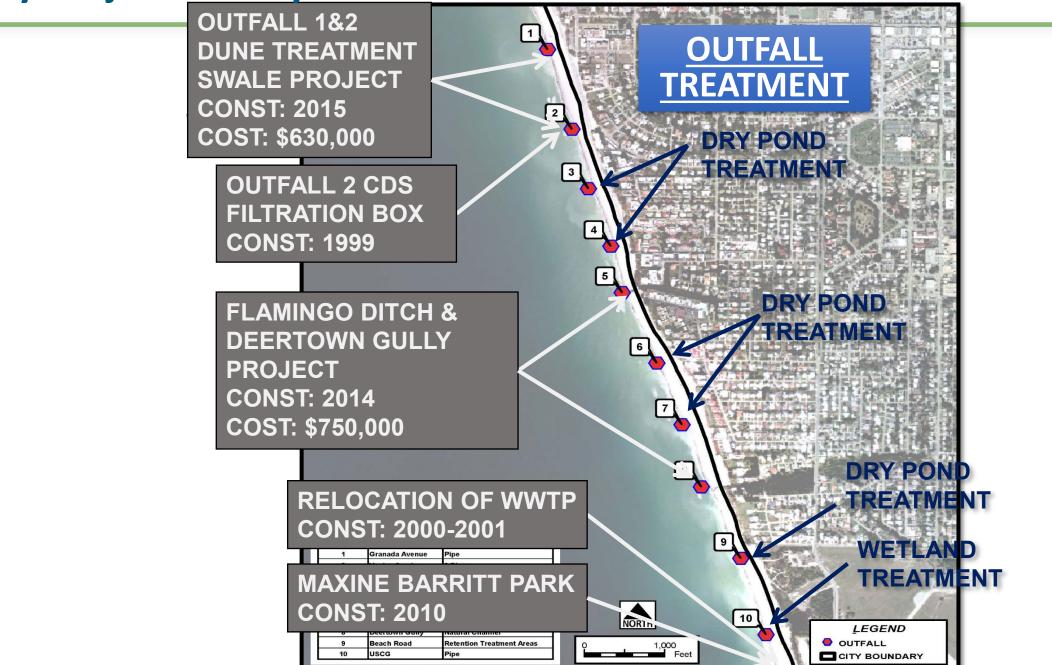
4

5

6


7

8


9

10

- Target Schedule
- Next Steps



#### **City Project History**

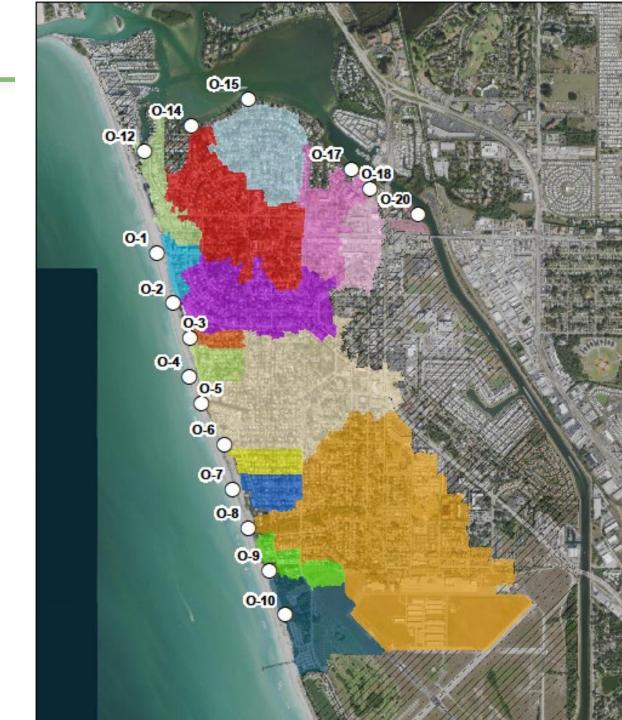


# Water Quality Model Inputs

- SIMPLE model calc pollutant loads from surface water runoff
- Estimated annual loads for the following constituents:
  - > Total Suspended Solids (TSS)
  - > Total Nitrogen (TN)
  - > Total Phosphorus (TP)
  - Fecal Coliform (FC)
- Identified Land Use and Event Mean Concentrations for each basin
  - > 42% High-density residential,
  - > 18% highway/transportation,
  - > 15% low-intensity commercial,
  - > 12% undeveloped rangeland/forest,
  - > 7% med-density residential
- Identified septic tanks within direct runoff model



#### Water Quality Model Results


- Constituent loads per catchment basin and sub-basin
- Reported as direct runoff, septic system loads, and sub-total load
- Annual total load (lb/yr)
- Est. annual total loads normalized over catchment area (lb/ac/yr)

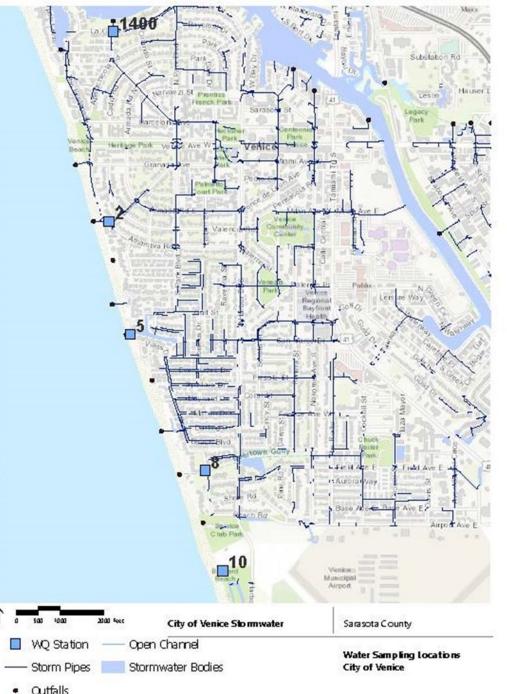
|     | le 7 Watershed Annual Total Loads by Source<br>Direct Runoff |                         |                  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------|-------------------------|------------------|--|--|--|--|--|--|
|     | Direct Runoff<br>(lb/yr)                                     | Septic Tanks<br>(Ib/yr) | Total<br>(Ib/yr) |  |  |  |  |  |  |
| TSS | 1,386,355                                                    | 240                     | 1,386,595        |  |  |  |  |  |  |
| TP  | 2,784                                                        | 18                      | 2,801            |  |  |  |  |  |  |
| TN  | 14,866                                                       | 513                     | 15,379           |  |  |  |  |  |  |
| FC  | 957,760                                                      | 1,116,027               | 2,073,787        |  |  |  |  |  |  |

|                              |                |                         |           |         |          |         |            | al Load (I |         |                |        |          |          |  |
|------------------------------|----------------|-------------------------|-----------|---------|----------|---------|------------|------------|---------|----------------|--------|----------|----------|--|
|                              |                | for Stornwater Outfalls |           |         |          |         |            |            |         |                |        |          |          |  |
|                              |                | Outfall                 | TSS       | % Total | Outfall  |         | % Tota     | I Outfal   |         | % Total        |        | FC       | % Total  |  |
|                              |                | 8                       | 286,204   | 21%     | 8        | 550     | 20%        | 8          | 3,039   | 20%            | 27     | 389,039  | 19%      |  |
|                              |                | 29                      | 195,199   | 14%     | 5        | 348     | 12%        | 29         | 1,781   | 12%            | 8      | 265,123  | 13%      |  |
|                              |                | 5                       | 154,703   | 11%     | 29       | 278     | 10%        | 5          | 1,759   | 11%            | 13     | 250,688  | 12%      |  |
|                              |                | 14                      | 104,150   | 8%      | 14       | 231     | 8%         | 14         | 1,163   | 8%             | 29     | 248,045  | 12%      |  |
|                              |                | 22                      | 95,202    | 7%      | 22       | 214     | 8%         | 22         | 1,089   | 7%             | 21     | 169,675  | 8%       |  |
|                              |                | 27                      | 79,514    | 6%      | 27       | 181     | 6%         | 27         | 1,085   | 7%             | 10     | 164,842  | 8%       |  |
|                              |                | 2                       | 68,191    | 5%      | 2        | 154     | 5%         | 17         | 780     | 5%             | 17     | 101,914  | 5%       |  |
| Annual Total Load (Ib/ac/yr) |                |                         |           |         |          |         |            |            |         |                | 38,399 | 5%<br>3% |          |  |
| for Stornwater Outfalls      |                |                         |           |         |          |         |            |            |         |                | 35,642 | 3%       |          |  |
| utfall                       | TSS            | % Total                 | Outfall   |         | 6 Total  | Outfall |            | % Total    | Outfall | FC             | % Tota | 41,511   | 2%       |  |
| 19                           | 1,309.2        | 8%                      | 21        | 3.0     | 8%       | 21      | 21.0       | 10%        | 13      | 20,991.3       |        | 35,816   | 2%       |  |
| 21                           | 1,169.9        | 7%                      | 19        | 2.7     | 8%       | 13      | 17.8       | 9%         | 21      | 16,674.0       |        | 28,763   | 1%       |  |
| 18                           | 1,168.1        | 7%                      | 20        | 2.5     | 7%       | 19      | 14.3       | 7%         | 27      | 3,242.2        |        | 26,014   | 1%       |  |
| 20                           | 1,051.5        | 6%                      | 18        | 2.4     | 7%       | 20      | 12.4       | 6%         | 10      | 2,178.3        |        | 22,453   | 1%       |  |
| 17                           | 936.4          | 6%                      | 17        | 2.2     | 6%       | 18      | 12.1       | 6%         | 17      | 1,455.3        |        | 18,694   | 1%       |  |
| 30                           | 911.4          | 6%                      | 13        | 2.0     | 6%       | 17      | 11.1       | 6%         | 19      | 1,181.0        |        | 18,207   | 1%       |  |
| 12                           | 831.3          | 5%                      | 12        | 1.9     | 5%       | 30      | 9.7        | 5%         | 20      | 682.8          |        | 17,810   | 1%       |  |
| 5                            | 786.1          | 5%                      | 30        | 1.9     | 5%       | 12      | 9.6        | 5%         | 18      | 605.6          |        | 15,007   | 1%       |  |
| 14                           | 752.2          | 5%                      | 5         | 1.8     | 5%       | 27      | 9.0        | 4%         | 8       | 593.7          |        | 8,861    | 0%       |  |
| 15                           | 711.8          | 4%                      | 14        | 1.7     | 5%       | 5       | 8.9        | 4%         | 12      | 523.7          |        | 8,063    | 0%       |  |
| 4                            | 711.5          | 4%                      | 15        | 1.6     | 5%       | 14      | 8.4        | 4%         | 29      | 512.6          |        | 7,639    | 0%       |  |
| 13                           | 710.6          | 4%                      | 2         | 1.6     | 4%       | 15      | 8.1        | 4%         | 5       | 500.0          |        | 4,529    | 0%       |  |
| 2                            | 704.1          | 4%                      | 24        | 1.5     | 4%       | 2       | 8.0        | 4%         | 30      | 498.7          |        | 4,423    | 0%       |  |
| 26                           | 683.3          | 4%                      | 27        | 1.5     | 4%       | 24      | 7.7        | 4%         | 14      | 446.0          |        | 215      | 0%       |  |
| 27                           | 662.7          | 4%                      | 4         | 1.5     | 4%       | 4       | 7.5        | 4%         | 28a     | 435.1          | 1%     | 185      | 0%<br>0% |  |
| 24                           | 655.0          | 4%                      | 22        | 1.4     | 4%       | 22      | 7.1        | 4%         | 15      | 433.4          |        | 95       | 0%       |  |
| 8<br>22                      | 640.9<br>621.6 | 4%<br>4%                | 8<br>26   | 1.2     | 3%<br>3% | 8<br>26 | 6.8<br>6.0 | 3%<br>3%   | 22      | 428.6<br>428.6 |        | 94       | 0%       |  |
| 22<br>29                     | 403.4          | 2%                      | 20        | 0.6     | 2%       | 20      | 3.7        | 2%         | 24      | 428.0          |        |          |          |  |
| 28a                          | 324.0          | 2%                      | 25        | 0.5     | 2%       | 10      | 3.1        | 2%         | 4       | 384.4          |        |          |          |  |
| 20a<br>25                    | 250.9          | 2%                      | 20<br>28a | 0.3     | 1%       | 25      | 2.7        | 1%         | 28b     | 272.1          |        |          |          |  |
| 235<br>28b                   | 225.9          | 1%                      | 10        | 0.3     | 1%       | 28a     | 2.5        | 1%         | 260     | 258.2          |        |          |          |  |
| 10                           | 137.9          | 1%                      | 28b       | 0.2     | 1%       | 28b     | 1.6        | 1%         | 28c     | 183.5          |        |          |          |  |
| 28c                          | 121.6          | 1%                      | 28c       | 0.2     | 0%       | 28c     | 1.0        | 0%         | 25      | 141.3          |        |          |          |  |
| 1                            | 14.9           | 0%                      | 7         | 0.0     | 0%       | 7       | 0.2        | 0%         | 7       | 9.2            |        |          |          |  |
| 3                            | 14.4           | 0%                      | 6         | 0.0     | 0%       | 6       | 0.2        | 0%         | 6       | 9.0            |        |          |          |  |
| 6                            | 14.2           | 0%                      | 3         | 0.0     | 0%       | 3       | 0.2        | 0%         | 3       | 8.7            |        |          |          |  |
| 7                            | 14.1           | 0%                      | 1         | 0.0     | 0%       | 1       | 0.1        | 0%         | 1       | 6.1            |        |          |          |  |
| 9                            | 10.2           | 0%                      | 9         | 0.0     | 0%       | 9       | 0.1        | 0%         | 9       | 3.8            |        |          |          |  |
| 0                            | 19.4           | <b>U</b> /0             | a a       | 0.0     | 0.10     | 0       | W. 1       | 0.10       | 9       | 0.0            | 0.0    | -        |          |  |

#### **Grab Sample Collection**

- 16 Major Outfalls
- Nutrients, solids, bacteria, field parameters
- Two storms
- 10 samples




### **Initial Grab Sampling Results**

- Meet State water quality stream standards for nutrients
- Exceed State water quality estuarine standards for nutrients
- Bacteria exceed both freshwater and estuarine standards
- High total suspended solids and turbidity at Outfall 1800



#### **Storm Event Monitoring**

- Outfalls 2, 5, 8, 10, & 1400
- Stage & discharge
- Rainfall
- Nutrients, solids, bacteria, field parameters
- June 1 to December 7, 2020
- 16 storms
- 6 to 10 samples per outfall



# **Monitoring Equipment**

- Shelter, solar panel & rain gauge
- ISCO autosamplers flowweighted composite sample
- Velocity meter
- Modem
- Data sonde





#### **Discharge Results**

- Complicated by tidal influence and blockage
- Generally aligned with modeled discharge
- Secondary source of water at Outfall 2

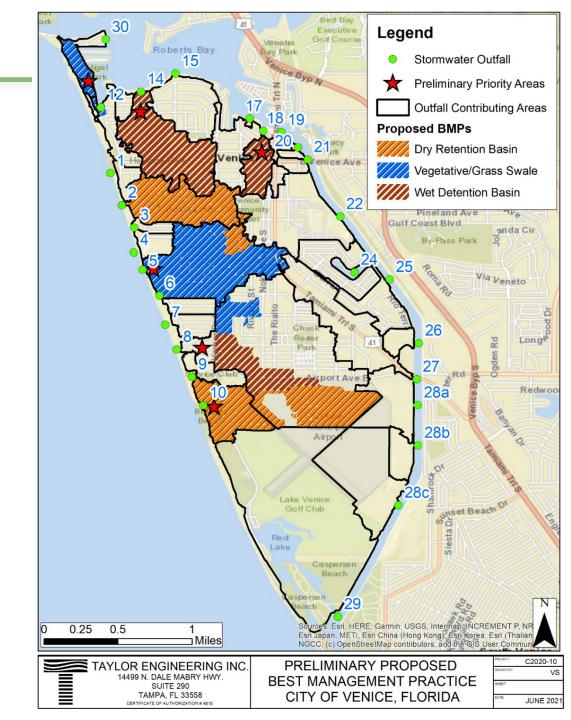


# Water Quality Monitoring Results

- Bacteria results above State standards but less than modeled
- Total nitrogen levels below State standards and model
- Total phosphorus levels just below State standards, but above model
- Generally confirmed that nutrients (particularly total phosphorus) and bacteria should be focus of future stormwater quality projects.

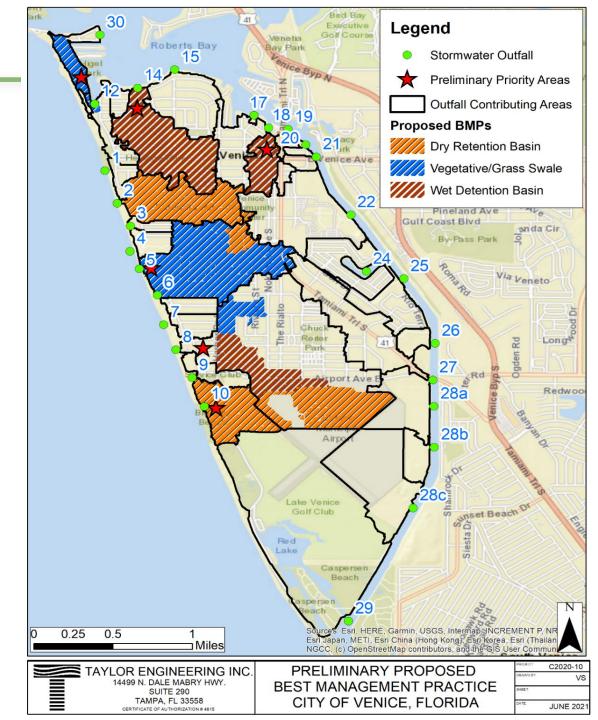


# **Preliminary Priority Projects**


- Model calibration using monitoring results
- Site visit with city and water management district staff

• Alternatives analysis of 15 options




> 6 sites + Outfall 1 & 2

- > Outfall 1 and 2 Combination divert flow and remove outfall #1
- ➢ Basin 18 @ Belle Costa (38 ac) −
  - enlarge baffle box at parking lot,
  - add eco vault,
  - multiple boxes along Nokomis Ave
- > Outfall 14 (138 ac) − baffle box
- Tarpon Center Drive swale and hybrid seawall design



# **Preliminary Project Options**

- > Outfall 5 (196 ac) dry retention in Venezia Park and/or enhance existing grass swales
- Basin 8 (429 ac) 4 options using wet and/or dry retention
  - 2 parcels at Sunset/Harbor Dr,
  - airport,
  - Cincy Drive easement
- > Basin 10 (76 ac) remove pipe, add dry retention and wetland restoration



#### **Next Steps**

- Complete alternatives analysis and develop cost estimates for priority 6 'island' outfall projects
- WQ model and sampling for Hatchett Creek
- ICPR model updates
  - Island of Venice
  - > Hatchett Creek
  - > Curry Creek/Myakka
  - Cowpen Slough
- Stormwater Management Plan Update
- Priority Project Implementation

#### • Upcoming work

|                                         | Months |   |   |   |   |   |   |    |    |    |     |
|-----------------------------------------|--------|---|---|---|---|---|---|----|----|----|-----|
| Estimated Project Timeline              |        | 2 | 3 | 4 | 5 | 6 | 9 | 12 | 16 | 18 | 24+ |
| Island Outfall WQ Monitoring & Modeling |        |   |   |   |   |   |   |    |    |    |     |
| Hatchett Creek WQ Modeling & Sampling   |        |   |   |   |   |   |   |    |    |    |     |
| Island of Venice ICPR Model Update      |        |   |   |   |   |   |   |    |    |    |     |
| Outfall 1 & 2 Design/Permitting         |        |   |   |   |   |   |   |    |    |    |     |
| Hatchett Creek ICPR Model Update        |        |   |   |   |   |   |   |    |    |    |     |
| Update Stormwater Mgmt Plan             |        |   |   |   |   |   |   |    |    |    |     |

# Special Thank You to SWFWMD and FDEP!!!





# **Questions!?**

Taylor Engineering | 17