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density (OD¢) values between 350nm and 750 nm (1.6 nm
resolution) were corrected for pathlength amplification by the
filter (beta correction) by

0D, = 0.3550D; + 0.5140DZ,

where OD; is the beta-corrected optical density in suspension. The
absorption coefficient for particles, a, (m™'), was then calculated
from ODs by

2
ap(m™') = 2.30D, (“‘; )100.
where OD; is the beta-corrected optical density in suspension, 7r?
is the area of particles on the filter, and V is the volume filtered in
ml.

Chromophoric dissolved organic matter (CDOM) absorption
was measured in the dual beam spectrophotometer using 10 cm
quartz cuvettes after filfration through a Gelman Sterivex 0.2 wm
cartridge . Similarly filtered nanopure
water was used in the reference cell. Optical density was measured
between 200nm and 750nm (1.6 nm resolution) and the
absorption coefficient for CDOM, ay (m~1), was calculated by

ay,(m~')=2.30D x 10.

where OD is the optical density using the 10 cm sample cuvettes.

Specific absorption by phytoplankton, a*, is calculated by
normalizing cell absorption to chlorophyll a content. This is a
measure of the cell's photosynthetic activity and varies among
species. Specific absorption coefficients were estimated for
samples collected from each station by

o — a,675(m~')
P extractedchla(pgl™ '}’

where a, 675 is the value of the spectral particulate absorption
coefficient at 675 nm and chl a is the concentration of chlorophyll a
calculated from extracting the filter after spectrophotometric
analysis.

3. Results

On 7 September, we located a K. brevis bloom near Point Ybel
off Sanibel Island by aerial reconnaissance . The sky was
overcast, winds were light (10-15 km h™') ana a north-to-south
current was estimated at <1 knot. The bloom was observed on
the northern edge of a plume of water coming from San Carlos
Bay. The front between the plume and bloom is seen in the
photographs as white patches that were later identified as dead
fish. The extent of the plume into the open Gulf of Mexico could
not be determined, but was visually apparent for 3-4 km slowly
curving to the northwest. The albedo of the plume appeared to
be less than that of the bloom, the bloom was yellow/brown in
color, and was organized in long rows of dense color alternating
with lighter color. The main portion of the plume was dark,
almost black. The eastern edge of the bloom was somewhat
scalloped, probably the result of active interchange across the
front.

While sampling the six stations along the Lee County coast

from a small boat on 8 September, we encountered the
amper-colored water suggestive of dinoflagellates, as well as
many dead fish, large and small, off Sanibel Island at Station 4.
Onboard observers experienced throat and eye irritation char-
acteristic of the aerosol irritants from these organisms. Summed
up, in terms of the scalars measured while on station, the
major differences between this station and the others were
the supersaturated oxygen concentration, extremely high

chlorophyll a concentrations and decrease in water transnarency
(Secchi disk) as well as a visual change in watercolor L

Temperature (29.4-30.3 “C) and salinity (14.5-32.1 psu) at the
six coastal stations were cansistent with conditions reported in the
long-term study ‘or the region
and time of year offshore Gulf
waters (35-36¢ cially within
the bloom at Station 4 (salinity 30 psu), because of freshening from
high precipitatinn and land_-hacad runaff acenriated with nrevinng
storm events

. Station 4 was also CNardCieriZeu by BIevdiey DU (dullaLc,
12.6 mgl ') and reduced Secchi depth transparency (0.3 m) in
comparison to the other stations (range 3.4-7.0 mg DO 1 !, Secchi
depth 1.1-1.6 m). Near-bottom DO indicated hypoxic conditions at
Station 1, which was the station with the lowest surface pH (7.0).
Water transparency was extremely low throughout the study area.
The estimated K4 (PAR) for all stations except Station 4 raneed from
091m 't01.32m ! and was 4.83 m ' at Station 4 )

Dissolved inorganic N and P were similar among the stations
except for much higher SRP (6.44 £ 0.57 WM\ ar hlnnm Station 4,
and higher nitrate (2.40 + 0.0 wM) at Station 6 . All stations
were relatively high in total dissolved organic nutrients, with
extremely high values at Station 4 (141+35uM TDN,
16.5 + 2.5 uM TDP). The §'°N data of the K. brevis bloom at Station
4 averaged +7.83 £ 0.54%, a value cimilar tn that fanind in macroalgae
along this coastline in 2004

The nnitrient and chloropnyl @ aata rrom tne six sudations are
shown ir The central portion of the buoyant plume is
assumed to be the position of lowest observed salinity at Station 4.
High values of chlorophyll a, DO, total dissolved nitrogen and
phosphorus occurred here in the confluence of the mixed outflows
of the Caloosahatchee and Peace rivers. This is consistent with
what was observed from the aircraft.

Phytoplankton biomass, as chlorophyll a concentration, was
moderate (7.3-17.4 pg 17!) in the study area except for verv high
concentrations (337-543 wgl ') at bloom Station 4 .The
high chlorophyll concentration in surface waters of Station 4 was
supported by high cell numbers of cyanobacterial (e.g. Synecho-
coccus spp.) and eukaryotic niconlankton (maximum cell dimen-
sion <3 wm) and K. brevis . As expected, given its large size

K. brevis dominateu une water optics at Station 4, despite
accounting for only ~5% of total phytoplankton cells, and caused
more optical forward scattering than the eukaryotic and prokar-
yotic picoplankton . Microscopic examination of sub-
samples, before and arter now cytometric analysis, revealed lysis of
some K. brevis cells, which would have underestimated abundance.
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Fig. 3. Flow cytometer cell counts for cyanobacteria (Synechococcus sp.),
picoeukaryotes, Karenia brevis, and total phytoplankton for Stations 1-6 sampled
on 8 September 2005.
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Fig. 8. Specific absorption spectra for particles (a,) and CDOM (a,) at Stations 1-6 sampled on 8 September 2005.

dinoflagellate Prorocentrum minimum (Pavillard) Schiller, but
lower than means repnrted for nanen nacean nhutanlankton
assemblages (D026 m—

4. Discussion

The K. brevis bloom characterized in this 2-day *“snapshot”
analysis occurred in lower-salinity, high-nutrient, high-CDOM
surface waters. CDOM along the western Flarida shelf is mostlv
contributed by riverine/estuarine sources
implicating riverine transport of land-based nutrients as a major
source of nutrition to the bloom. The shallow waters of the bloom
area had a lower salinity surface layer and a more saline underlying
layer, promoting water column stability. Such conditions have
besn ahserved in manv coastal regions experiencing cultural

et and were identified
by lisite for Florida red
tiges. INUITIENTS 1N LUUM 1rom tana aiamage have alsn heen
reported to favor some blooms For
example, in Swedish coastal wai that

organic N and P were major forms o1 nuunens m viowil waier”,
Addition of CDOM favored growth of the dinoflagellate, P.
minimum, possibly due to CDOM oreanic nutrient and heavv
metal chelator content .
proposed an iron/CDOM index to predict rioriua s. previs vouins
under conditions of iron limitation.

We earlier suggested a pofential cammaonalitv between the
microalgal blooms observed by n eutrophic
waters of Long Island (enrichea by auck 1arm runon) and the K

brevis bloom sampled in this study off Sanibel Island on the west
coast of Florida. The red tide we sampled in lower-salinity (30 psu)
waters had very high concentrations of TNP <imilar to values
reported over a half-century earlier by
These authors found values of 14.6-20.4 M 11 1n ~3£ psu warter
of “deep amber color” associated with red tides some 1.5 miles off
Sarasota Point, Sarasota, FL. Those values bracket the mean value
(16.5 £ 2.47 pM) we observed for the red tide in similar amber
colored water off Sanibel Island in 2005. Considering that these
studies were almost 60 years apart, the similarity in values confirms
the high quality of P analyses obtained by oceanographers in that
period. The SRP concentrations associated with red tide off Sanibel in
2005 were also very high, averaging 6.44 + 0.57 wM. That is much
higher than SRP concentrations in the range of N3N-N92 uM
renanrted for coastal waters of Lee County in 2004
The unusually high concentrations within e 1eu uue
bloom could be due, in part, to breakage of the naked and delicate K
brevis cells during syringe filtration, which would release SRP and TDP
from internal sources. Regardless, the high background SRP fun tn
1T uMY and TDP (5 wM) concentrations observed by
for nearshore coastal waters off Lee Lounty 1n 1die
2uu4 wouiu ve considered eutrophic and canahle of sunporting a
dense K. brevis bloom of >10° cells 1! ,
Because of high background SRP anu 1ur concenuauons in the
Lee Countv’c nearchonra coastal warers, algal blooms are strongly N~
limited . Although there are a variety
of potenuany imporwant 1anu-vaseu Nitrogen sources to coastal
waters, the mean 8'°N value (+7.83%.) of the K. brevis bloom off
Sanibel closely matched the §'°N values of +6-8%. for macroalgal
blooms collected on beaches and shallow reefs along this coastline
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press (Naples News-Press, Ft. Myers Press-Journal). Mr. Keith
Kibbey, laboratory manager of the lLee County Environmental
Laboratory, provided boat and analytical support as well as
laboratory space for this work. Flow cytometry analysis and
assistance were provided by the J.J. Maclsaac Aquatic Cytometry
Facility at the Bigelow Laboratory for Ocean Sciences. This
manuscript was improved by the comments of three anonymous
reviewers and Mr. Brad Bedford. This is contribution number 1708
of the Harbor Branch Oceanographic Institute at Florida Atlantic
University, Ft. Pierce, FL.[SS]
Addendum: Real-time data of this region are now available at
The reader is directed to the results from a
new paiuersiup ui utizens, Sanibel Captiva Conservation Founda-
tion, government and business efforts. The River Estuary and
Coastal Observation Network (RECON) is a network of optical
water quality sensors (Satlantic, Inc.) deployed throughout the
Caloosahatchee River and estuary to provide real-time water
quality data to scientists, policy makers and the general public.
RECON's network of high quality, autonomous, in situ sensors can
detect the presence of algal blooms and nutrient hotspots. An
airborne companion to this network of activity has been proposed
and is under consideration.
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