Engineering Alternatives Venice Beach and GRR

Dr. Kelly Rankin Legault, Ph.D., P.E. Brandon Burch, E.I.

USACE Jacksonville District

January 2017

Trusted Partners Delivering Value Today for a Better Tomorrow

Sarasota County: Venice

BUILDING STRONG

Authorization:

Water Resources Development Act: WRDA 1986 (Public Law 99-662) in accordance with the Chief of Engineers Report dates 28 February 1986.

Construction:

Initial: May 1996

1st Nourishment: August 2005

2nd Nourishment: February 2015

End 50 year Federal Participation: 2046

Cost Share:

Original: FED 72.55%/NF 27.45%

After LRR: FED 65.8%/NF 34.2%

Engineering Alternatives

BUILDING STRONG

Traditional Technologies

- Groins
- Jetty Spur
- Breakwater
- Seawall
- Beach Nourishment

Innovative Technologies

- Beach Dewatering
- Low-Profile Groins
- Permeable Groins
- Geotextile Construction
- Catch Basin / Sand Bypassing
- Reef Balls

Traditional Technologies

BUILDING STRONG

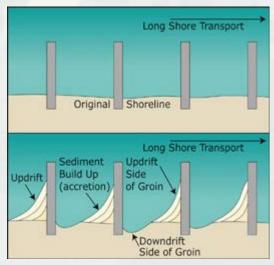
Jetty Spur

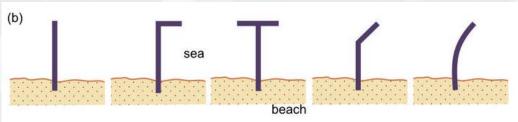
- A jetty spur is a relatively short structure extending at an angle from the main jetty axis that protects a navigation channel. The spur diverts sediment that may shoal in the channel back towards the beach, where it can nourish the beach.
- Spurs are usually constructed of rock rubble similar to the connecting jetty.
- Spurs are typically nearly perpendicular to the jetty, but may also be constructed at some angle with respect to the jetty up to about 45 deg.

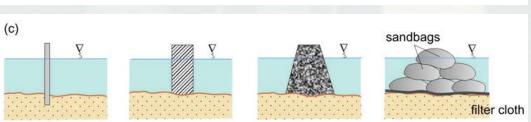
Jetty Spur

ERDC/CHL CHETN-IV-66 February 2006

Figure 1. Example of jetty spurs at Siuslaw River Inlet, OR. Spur lengths are 122 m

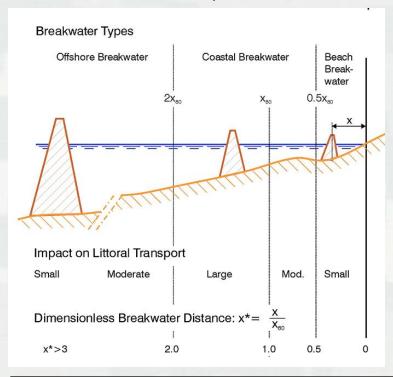

Traditional Technologies




BUILDING STRONG

Traditional Groins and T-Head Groins

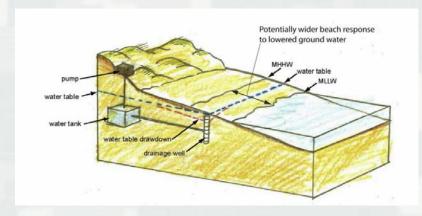
- Interruption to alongshore sediment transport
- Updrift accretion
- Downdrift erosion

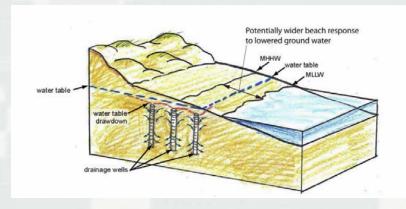

Traditional Technologies

BUILDING STRONG

Breakwater

 Breakwaters reduce the intensity of wave action in inshore waters and thereby reduce coastal erosion or provide safe harbor.

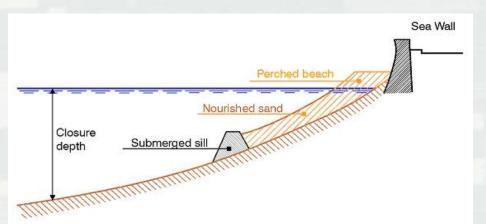



BUILDING STRONG

Dewatering Systems

- Generally, beach dewatering involves the removal of water from the beach to increase the natural accretion processes.
- Dewatering works on the hypothesis that a dry beachface will improve swash infiltration and thus deposit sediment on the beach.

Dewatering Systems



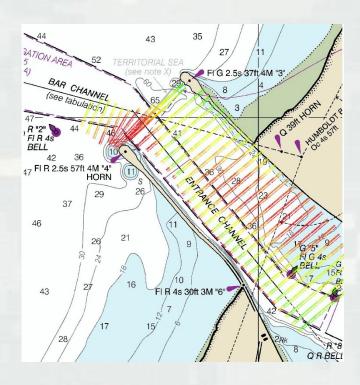
BUILDING STRONG

Low-Profile/Submerged Structures

- Low Profile Groins (orthogonal)
- Perched Beach (parallel)
 - A perched beach provides a wider beach at locations where the natural beach has become too narrow and low due to the erosion of the coastal profile at a location, where the coastline is fixed.

Permeable Groins / Adjustable Groins

- Permeable / Adjustable Groins
 - Permeable adjustable groins can be adjusted to increase the permeability to enhance bypassing.
 - Permeable groins have an enhanced ability to bypass sediments but at a fixed rate related to the incident transport flux
 - Notched groins can bypass sediments through the notch in the surf zone
 - Permeable pile groins are another example of groins that have an ability to bypass sediments



BUILDING STRONG

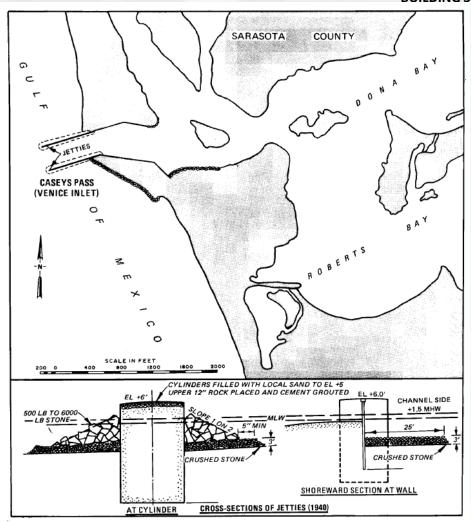
Sediment Trap / Bypassing Systems

- Sediment Trap / Pump
- Navigation channels

BUILDING STRONG

Artificial Reef / Submerged Breakwaters

- Reef Balls
- Submerged reef
 - ASR


Design Considerations

BUILDING STRONG

Design Considerations

- Historical Data
- Oceanographic parameters

What is a General Reevaluation Report?

BUILDING STRONG

"SMART" Planning?

- √ Specific
- ✓ Measurable
- √ Attainable
- ✓ Risk-Informed
- √ Timely

"3x3x3"?

- Under \$3M total
- Within 3 years
- Using 3 levels of enhanced vertical teaming
- 100 page main reports, with appendices that fit in a 3" binder

General Reevaluation Report (GRR)

3

BUILDING STRONG

SMART Feasibility Study Process

18-36 Months

SCOPING

Alternatives Milestone Vertical Team concurrence on array of alternatives ALTERNATIVE FORMULATION & ANALYSIS

TSP Milestone
Vertical Team
concurrence on
tentatively
selected plan

Agency Decision Milestone Agency endorsement of recommended plan FEASIBILITY-LEVEL ANALYSIS

4

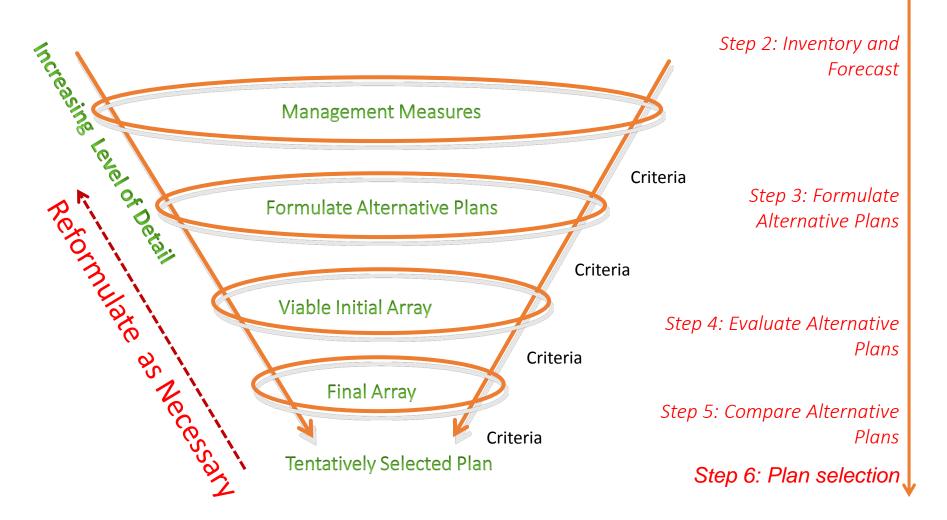
Civil Works Review Board Release for State & Agency Review CHIEF'S REPORT

Chief's Report

eport

5

SMART Planning



BUILDING STRONG

- Focuses on incremental decision making in a progressive <u>6-step</u> planning process
- Identifies next decision to be made and <u>manages uncertainty</u> in making it
 - Only collect data needed
 - Make decision
 - Move on to next decision
- Incorporates <u>quality</u> engineering, economics, real estate and environmental analysis
- <u>Fully compliant</u> with environmental law (NEPA, etc...)
- Includes public involvement

Plan Formulation Process

Step 1: Specify Problems and Opportunities

General Reevaluation Report (GRR)

BUILDING STRONG

SMART PLANNING

- Step 1: Sarasota County send official letter requesting the Corps perform a "New Phase" Study.
- Step 2: Corps request funding for a "New Phase" GRR.
- Step 3: Congress appropriates funds for USACE to enter into a Feasibility Cost Share Agreement and begin GRR
- Step 4: Begin the 6 Step Planning Process:
 - 1) Identify problems and opportunities
 - 2) Inventory and forecast conditions
 - 3) Formulate Alternatives
 - 4) Evaluate Alternatives
 - 5) Comparing Alternatives
 - 6) Select Plan

Risks Associated with GRR

BUILDING STRONG

You have an authorized Federal Project with one of the highest cost share percentages

Potential Risk of no longer having a justified project.

Potential Lower Cost Share

Potential reduced beach profile

Future Concerns

BUILDING STRONG

What happens after federal participation ends?

WRDA2014: Section 1037. Hurricane and Storm Damage Reduction

... '(b) REVIEW.—Notwithstanding subsection (a), the Secretary shall, at the request of the non-Federal interest, carry out a study to determine the feasibility of extending the period of nourishment described in subsection (a) for a period not to exceed 15 additional years beyond the maximum period described in subsection...

(potential to extend project to 2046+15=~2061)

RSM: Cross Business Line Benefits 2013 SAJ RSM VALUE TO THE NATION

FY13 NAVIGATION RSM	TOTAL COST (NAV)	PLACEMENT	BEACH VOLUME**	ROUGH VALUE TO FRM***
Port Everglades* (partial)	\$ 1,898,489	Broward SPP	96,126	\$5,959,812
Palm Beach Harbor	\$ 4,870,074	Palm Beach Co NF	420,000	\$6,300,000
Ft Pierce Inlet	\$ 3,299,090	Fort Pierce SPP	191,000	\$2,330,200
St Lucie Inlet	\$ 6,465,600	Martin Co. SPP	200,000	\$3,000,000
St Augustine Inlet	\$ 1,932,600	St Johns SPP	116,000	\$696,000
Ponce Inlet (SAW)	\$ 1,000,000	St Lucie SPP (NS)	141,000	\$2,115,000
AIWW-Jupiter Inlet	\$ 2,601,207	Palm Beach Co	55,000	\$825,000
AIWW-Haulover Inlet		Dade Co. SPP	120,000	\$6,180,000
	\$ 22,067,060		IT TO NATI	\$27,406,012
		INCREA	SED VALUE TO NATI	
King's Bay EC (NAVY)	\$ 8,030,480	Nassau Co SPP	121,046	\$ 1,361,768

20

<sup>Includes \$1.2M NF (MOA)
Includes 15% placement losses
Contract costs only, additional FRM value for E&D/S&A not included</sup>